\qquad

Module 18 Vision: Sensory and Perceptual Processing

1. the distance from the peak of one light or sound wave to the peak of the next B
2. the dimension of color that is determined by the wavelength of light 0
3. the amount of energy in a light wave, which influences what we perceive as brightness I
4. the adjustable opening in the center of the eye through which light enters N
5. a ring of muscle tissue that forms the colored portion of the eye around the pupil and controls the size of the pupil opening; it dilates or constricts in response to light intensity F
6. the transparent structure behind the pupil that changes shape to help focus images on the retina J
7. a multilayered, light-sensitive tissue on the eyeball's inner surface; contains the receptor rods and cones plus layers of neurons that begin the processing of visual information G
8. the central focal point in the retina K
9. the process by which the eye's lens change its curvature and thickness to focus near or far objects on the retina M
10. retinal receptors that detect black, white and gray, and are sensitive to movement; necessary for peripheral and twilight vision when cones don't respond C
11. retinal receptors that are concentrated near the center of the retina and that function in daylight or in well-lit conditions; detect fine details and give rise to color sensations A
12. the nerve that carries neural impulses from the eye to the brain P
13. the point at which the optic nerve leaves the eye, creating a "blind" spot because no receptor cells are located there D
14. nerve cells in the brain's visual cortex that respond to specific features of the stimulus, such as shape, angle, or movement H
A. cones
B. wavelength
C. rods
D. blind spot
E. y-h trichromatic theory
F. iris
G. retina
H. feature detectors
I. intensity
J. lens
K. fovea
L. opponent-process theory
M. accommodation
N. pupil
15. processing of many aspects of a problem simultaneously; the brain's natural mode of information processing for many functions, including vision Q
16. the theory that opposing retinal processes (red-green, blue-yellow, white-black) enable color vision. For example, some cells are stimulated by green and inhibited by red; others are stimulated by red and inhibited by green L
17. the theory that the retina contains three different types of color receptors which, when stimulate in combination, can produce the perception of any E
O. hue
P. optic nerve
Q. parallel processing
